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Abstract—Although linearly constrained minimum variance
(LCMV) beamforming is robust against imprecise target infor-
mation, it usually leads to relatively high sidelobe and distorted
mainlobe which would induce a high false alarm probability. To
circumvent this problem, this work devises a novel robust LCMV
beamforming approach by utilizing response vector optimization.
It intends to find the optimal response vector in lieu of the all-one
response vector in traditional LCMV beamformer. The proposed
robust beamformer is first formulated as a nonconvex quadrat-
ically constrained quadratic programming problem, and then
transformed into a semidefinite programming problem which
can be efficiently and exactly solved. The proposed beamformer
not only improves the performance in terms of signal-to-interfer-
ence-plus-noise ratio substantially, but also possesses low sidelobe
and well-maintained mainlobe. Moreover, since the response
vector is quite small in size, the complexity of calculating the
optimal response vector is negligible. Additionally, the proposed
beamformer is also extended to two-dimensional space-time adap-
tive processing. Simulation results are presented to demonstrate
the superiority of the proposed approach.
Index Terms—Robust adaptive beamforming, linearly con-

strained minimum variance beamformer, response vector op-
timization, quadratically constrained quadratic programming,
semidefinite programming.

I. INTRODUCTION

A DAPTIVE digital beamforming (DBF) is a classical
approach for target detection, interference cancellation

and direction-of-arrival (DOA) estimation. The adaptive beam-
former in spatial-temporal domains, namely, the space-time
adaptive processing (STAP), is capable of jointly exploiting
multiple receive elements and multiple transmitted pulses in
spatial-temporal domains to suppress deleteriously correlated
clutter and interference [1]. Therefore, the adaptive beam-
forming has been used in many areas, such as radar, sonar,
wireless communication, medical imaging and so on. Note that
DBF is applied only in spatial domain while STAP is performed
in joint spatial and temporal domains. The STAP includes the
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DBF as a special case when the pulse number is equal to one.
Therefore, the structures of the steering vectors of DBF and
STAP are different, which induces distinguishable approaches
in practical applications. Usually, the adaptive beamformer is
designed according to some criteria, such as the minimum vari-
ance distortionless response (MVDR), minimum mean-squared
error (MMSE) and maximum signal-to-noise ratio (SNR). As
a popular beamformer, Capon approach is developed upon
the assumption that the desired target signal is absent from
the training data and the knowledge of the target direction is
known accurately [2]. Under this condition, it enjoys both high
resolution and good interference suppression.
It is well known that the traditional Capon method is quite

sensitive to errors, thereby calling for robust adaptive beam-
forming approach in practical applications. Usually, the small
sample support, imprecise knowledge of the signal steering
vector and training data corrupted by the target signal are the
main causes of performance degradation in adaptive beam-
forming. The performance degradation also results from the
mismatch between the assumed and actual steering vectors,
source spreading, imperfect array calibration, distorted antenna
shape and extended target in high resolution radars. The per-
formance degradation becomes more severe in STAP due to
the fact that the spatial and temporal frequencies of clutter are
coupled in spatial-temporal domains and the characteristic of
clutter is typical non-homogeneity in phased-array radar [3].
That is to say, the training data does not satisfy the independent
and identically distributed (IID) condition. Besides, the training
data may also be corrupted by other moving targets, especially
in heavy traffic or group target circumstance [4], i.e., a number
of closely spaced targets moving in a coordinated fashion. This
eventually results in inter-target nulling phenomenon.
Various approaches have been developed to address the

robust beamforming. Diagonal loading technique and its
variants are quite efficient in enhancing the robustness of
the Capon beamformer [5]–[7]. However, the limitation of
diagonal loading method is that it cannot provide any guid-
ance to accurately determine the diagonal loading factor.
Several worst-case optimization beamformers were proposed
in [8]–[10], which have been proved to be equivalent to each
other and belong to the class of diagonal loading approach with
accurate relationship between the diagonal loading factor and
uncertainty-set. The doubly constrained robust Capon beam-
forming method [11], [12] and the probabilistically constrained
robust adaptive beamforming technique [13] are the variants of
the worst-case-based approach in solving practical problems. In
[14], a steering vector estimation based robust adaptive beam-
forming technique is presented, which does not require any
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assumptions on the norm of steering vector error or its proba-
bility distribution. In order to find the actual steering vector of
the MVDR beamformer, the output power is maximized under
some constraint in [14], which is based on the observation
that interference can be effectively suppressed by the optimal
adaptive weight of MVDR beamformer and thus the output
power mainly consists of the target signal. It is revealed in [15],
[16] that the eigenspace-based beamformers are of robustness
against target steering vector errors. However, they rely on the
knowledge of source number which turns out to be unknown
and needs to be estimated [17]–[19]. Moreover, they become
rather ineffective when the dimension of the signal-plus-inter-
ference subspace is high or the SNR is low because the signal
and noise subspaces swap with high probability in these cases.
Another popular approach is the so-called linearly constrained
minimum variance (LCMV) beamformer [20]–[24], which
imposes several linear constraints when minimizing the output
variance, thus offering robustness against signal steering vector
mismatch. The LCMV method can broaden the mainlobe or
notch of the beampattern while maintaining the output of the
target at the expense of degree-of-freedom (DOF) consumption.
Indeed, it is inefficient in terms of sidelobe suppression, thus
leading to poor performance, especially in extended clutter en-
vironment. A phase response constrained LCMV beamformer
has been proposed in [25], which yields a lower sidelobe of the
beampattern than the traditional LCMV beamformer. In [26],
linear constraints are used in robust Capon beamforming to
handle arbitrary array steering vector errors, which coincides
with the LCMV beamformer. In [27], a robust adaptive beam-
former was proposed using two quadratic constraints to force
the magnitude response of two constrained points to exceed
unity. This method can be taken as an LCMV beamformer
with its response vector further optimized. Constraints on
array magnitude response are also considered in [28]–[30],
yielding robust adaptive beamformers which are able to flexibly
control the robust response region with specified beamwidth
and response ripple. In [28], the optimization of an adaptive
beamformer is reformulated as a linear programming problem
by transforming the array output covariance and magnitude
response into linear functions of the autocorrelation sequence
of the array weight. In [29], a robust adaptive beamformer is
established by exploiting the semidefinite programming (SDP),
whereby the beamformer is also cast as a linear programming
problem. The magnitude response constraints and conjugate
symmetric structure of the array weight are utilized to derive
a robust beamformer without any relaxation or approximation
[31], which substantially improves the performance. In [32], a
covariance matrix tapering method has been proposed to over-
come the pattern distortion resulting from insufficient sample
support or nonstationary interference. The covariance matrix
tapering for STAP radar can provide robust clutter cancellation.
To alleviate the performance degradation when uncertainty
appears in the DOA and Doppler frequency, a robust direct
data domain STAP method has been proposed in [33], which
considers a mismatch between the assumed and actual steering
vectors and improves the performance of STAP radar.
Although the traditional LCMV beamformer is robust

against imprecise target DOA estimations, its performance

degradation is evident due to the relatively high sidelobe and
distorted mainlobe of the beampattern, especially in nonsta-
tionary environment. In this paper, we devise a robust LCMV
beamformer based on response vector optimization (RVO),
called RVO-LCMV beamformer, which provides superiority in
robustness as well as output signal-to-interference-plus-noise
ratio (SINR). To this end, we first establish the objective func-
tion with respect to the response vector and then minimize the
output power of the LCMV beamformer under the constraint
that the mainlobe response exceeds unity to maintain the
mainlobe of the beampattern. In the sequel, the constraints are
imposed on the response vector, yielding a non-convex quadrat-
ically constrained quadratic programming (QCQP) problem.
To solve this problem, we transform the QCQP problem into a
relaxed SDP problem. Note that the exact equivalence between
the relaxed SDP based beamformer and original QCQP based
beamformer relies on the existence of a rank-one constraint on
the optimal semidefinite matrix. As a result, an approximate
solution is provided, which approaches the optimal solution in
probability one. Compared with the state-of-the-art techniques,
the proposed method can suppress the sidelobe efficiently and
maintain the mainlobe properly. Besides, the proposed method
significantly reduces the computational complexity as the
response vector is usually small in size.
The paper is organized as follows. In Section II, the signal

models are introduced accommodating the DBF and STAP
radars. In Section III, the RVO-LCMV beamformer is devised,
and the non-convex original QCQP problem is transformed
into a relaxed SDP problem. The performance analysis of the
proposed method is conducted in Section IV. Numerical results
are presented in Section V. Finally, conclusions are presented
in Section VI.

II. PROBLEM FORMULATION

We consider a monostatic linear array radar with omni-
directional antenna elements. The narrowband signal received
by the array can be expressed as

(1)

where and denote the target signal, jamming in-
terference and/or ground clutter, and white Gaussian noise, re-
spectively. For DBF, the desired signal can be written as

, where is the signal waveform and is the spa-
tial steering vector. For STAP, coherent pulses are collected
and stacked into -dimensional space-time snapshots, i.e.,

, where denotes the Kronecker
product and is the temporal steering vector.
The output of the beamformer is the weighted summation of

the received data, i.e.,

(2)

where the superscript denotes Hermitian transpose operator
and is the complex-valued weight. The weight can be deter-
mined by the MVDR criterion, that is,

(3)
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where is the interference/clutter-plus-noise covariance ma-
trix, for DBF and for STAP. In practical
implementations, the covariance matrix is usually obtained by
averaging the outer-product of the snapshot in range:

(4)

where is the number of snapshots. According to the well-
known RMB rule [34], the required amount of the snapshots
to well estimate the covariance matrix is more than twice the
number of antennas for DBF when the observations are IID. For
STAP, on the other hand, this amount is more than twice
provided that the observed data are IID. However, the nonsta-
tionary and non-homogeneity of the clutter will seriously de-
viate from the underlying IID assumption. Besides, the informa-
tion of the target under test is usually not accurate. These errors
considerably degrade the performance of the sample matrix in-
verse (SMI) basedMVDR (SMI-MVDR) beamformer. To over-
come this problem, an LCMV beamformer was proposed in [20]
by imposing multiple unity-gain constraints for a small spread
of angles and/or Doppler frequencies around the assumed angle
and/or Doppler frequencies.

(5)

where is the constraint matrix consisting of spatial
steering vectors corresponding to the constrained directions (or

space-time steering vectors corresponding to the constrained
DOAs and Doppler frequencies), and is the all-one response
vector with each element specifying the desired unity-gain
response. The solution to (5) is

(6)

As pointed out above, nevertheless, the traditional LCMV
beamformer yields relatively high sidelobe of the beampattern,
thereby being more sensitive to the unknown interference. An-
other disadvantage of the traditional LCMV beamformer is that
its mainlobe is not well maintained [26]. In STAP applications,
for example, the high sidelobe and distorted mainlobe induce
severe performance degradation [3]. In order to improve the per-
formance of LCMV beamformer in practical situations, we will
devise an optimal response vector in lieu of the all-one response
vector in the following section.

III. ROBUST RVO-LCMV BEAMFORMING METHOD

As aforementioned, the response vector in the traditional
LCMV beamformer is usually set as an all-one vector to
guarantee unity gains. Actually, this kind of response vector
is mismatched with the constraint matrix . Consequently,
the traditional LCMV beamformer suffers from dramatical
performance degradation due to high sidelobe and distorted
mainlobe. To circumvent this problem, the response vector in
(5) is further refined in this section. The motivation comes from
the observation that the sidelobe of the beampattern is lowered
when the phase of the response vector is considered [25], [31].
Therefore, we are able to achieve performance improvement
by replacing the response vector with an optimal one.

Fig. 1. Illustration of the solution to Problem (12).

Recalling that each element of the response vector is com-
plex-valued, the LCMV beamformer in (5) can be rewritten as

(7)

where is the complex-valued
response vector. The adaptive weight takes the similar form as
(6), that is,

(8)

where the superscript is the conjugate operator. Substituting
(8) into the objective function of (7) yields

(9)

Note that is a Hermitian matrix, i.e.,
. Moreover, because is a positive semidefinite matrix and
is full column rank, is a positive semidefinite matrix, i.e.,

. In order tomaintain themainlobe of the beampattern, we
assume that the absolute value of each element of the response
vector exceeds unity. Thus, we obtain

(10)

We define a matrix , where is 1 if and only
if and , otherwise, is 0, that is,

(11)

Therefore, (10) can be further rewritten as

(12)

This is a non-convex QCQP problem because the feasible set
is outside of the constrained ellipsoid. The problem (12) is dif-
ferent from those in [28]–[31]. The variable of the proposed ap-
proach is the response vector which is very small in size. To il-
lustrate the solution to (12), a response vector consisting of two
components is depicted in Fig. 1. It is seen that the feasible set of
(12) is the quadrants in the four corners, which is non-convex.
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The problem in (12) can be expressed in higher dimension
subspace as a SDP problem [35]. In particular, the objective
function can be written as

(13)

where denotes the trace operator and the property
has been used. The matrix is defined

as which is Hermitian positive semidefinite, i.e.,
. It is clear that the rank of is one, i.e., .

Similarly, the constraint in (12) can also be transformed as

(14)

Thus, Problem (12) amounts to the following problem

(15)

From (15), we can see that this problem is linear with respect
to the matrix variable . However, the rank-one constraint is
non-convex. This is because the introduction of two rank-one
matrix will yield a rank-two matrix if these two matrices do not
share the same range. Generally, it is difficult to solve a non-
convex problem. However, this problem can be solved by using
semidefinite relaxation, i.e., dropping the rank-one constraint.
Thus, a relaxed SDP problem is obtained as [35], [39]

(16)

In summary, the robust LCMV beamforming is expressed as
a problem aiming at finding the optimal response vector. More-
over, we have converted the original QCQP problem in (12)
into a relaxed SDP problem in (16) which can be easily and
exactly solved using the standard and highly efficient interior
point method software tools [36]. In general, the semidefinite
relaxation can only be used to obtain a lower bound for the op-
timal objective function and provide an approximate solution to
the original problem. If the rank of equals to one, then the
optimal solution can be determined exactly. However, the rank
of can be larger than one. Thus, we should find the proper ap-
proach to generate the rank-one . Further discussions on the
rank-one approximation will be provided in Section IV.A.
Indeed, Problem (16) can also be implemented by utilizing

the corresponding real and imaginary components of the com-
plex-valued response vector. Defining

(17a)

(17b)

(17c)

we can obtain

(18)

By using the similar procedure aforementioned, the QCQP
problem in (18) can be reformulated as a relaxed SDP problem,
that is,

(19)

where . Since is a real-valued vector, is sym-
metric positive semidefinite. Note that after solving the opti-
mization problem (19), a suboptimal solution can be deter-
mined. Therefore the response vector of the proposed beam-
former is given by

(20)

where means that if there is a feasible solution to Problem
(19), its negative counterpart is also a solution.

IV. ANALYSIS OF THE PROPOSED METHOD

A. Existence of Rank-One Solution
Note that the traditional response vector whose elements are

all equal to one is feasible for the constraints in (12). There-
fore, the existence of a solution can be confirmed. On the other
hand, it is noteworthy that the solution obtained by solving the
relaxed SDP problem (16) or (19) may not be exactly rank-one.
Nevertheless, the lower the rank of the solution, the better the
approximation we would expect. The relationship between the
rank of the matrix and the number of the constraints has been
addressed in [37]. It follows from [37] that, for the real-valued
problem, the following relationship holds

(21)

Therefore, the relaxed SDP problem in (19) is tight for the orig-
inal QCQP problem with . In other words, if the number
of constraints is not more than 2, then solving the relaxed SDP
problem is equivalent to solving the original QCQP problem.
In this case, the principal eigenvector component is exactly the
solution to the original problem. Otherwise, the optimal has
to be generated from the general rank solution . For the com-
plex-valued problem, the relationship between the rank of
and number of constraints has been investigated in [38], which
indicates that

(22)

In this case, solving the relaxed SDP problem in (16) is equiv-
alent to solving the original QCQP problem when the number
of constraints is no more than 3. Moreover, the rank-one solu-
tion can be determined by using the well-known rank reduction
technique. It follows from [35], [39] that the probability of ob-
taining a rank-one solution approaches one for the relaxed SDP
problem.
Usually, the rank-one approximation is applied by using the

eigenvalue-decomposition (EVD).

(23)
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where is the solution to the relaxed SDP problem,
are the eigenvalues

and are the corresponding eigenvectors. Thus
the suboptimal response vector can be expressed as

(24)

As the probability of obtaining a rank-one solution for the re-
laxed SDP problem is close to one, (24) provides the optimal
response vector with high probability.
An alternative interpretation of the relaxed SDP problem is to

solve the QCQP problem in expectation. Consider a stochastic
QCQP problem:

(25)

where we manipulate the statistics of so that the objective
function is minimized and the constraints are satisfied in expec-
tation. It is verified that problem (25) is equivalent to problem
(16). To obtain the rank-one solution, we carry out the following
algorithm:

Input: the relaxed SDP solution to (16) and the
number of randomizations .
for
1) generate a random vector
2) modify so that it is feasible for the original QCQP

problem, i.e., .

end
determine by
Output: , which is the approximate solution.

Such a randomized QCQP procedure can be implemented
several times to get a better approximation.
Note that the iterative second-order cone programming

(SOCP) scheme [40] is also applicable for problem (10) as
the magnitude of the response vector can be conservatively
approximated by the real part, that is,

(26)

where stands for the real part of its arguments. Thus, the
non-convex constraints can be strengthened as

(27)

Defining , the objective function can be written as

(28)

Thus, introducing a new scalar non-negative variable and a
new constraint , problem (10) is converted to

(29)

It should be noticed that the feasible set of problem (29) is
only a subset of the original problem (10). It follows from [40]
that the solution of (29) may not be optimal for (10) and it
may turn the original feasible problem into an infeasible one.
In this case, the iterative SOCP approach can be performed to
obtain the optimal solution [40]. Since the rotation of the adap-
tive weight by a factor of does not change the output
SINR of the beamformer [41], the output SINR of the beam-
former remains identical when the response vector is rotated by
a factor of . In this problem, the rotated angle for the
iteration is written as

(30)

where is phase of the arguments. Note that the following
inequality holds

(31)

For the SDP scheme, the feasible set of problem (16) will
always contain the solution of the original problem (10). As
the number of constraints is usually small, the relaxed SDP ap-
proach is an effective way to approximately solve the problem
while the iterative SOCP approach is more beneficial when
is large.

B. Diagonal Loading Analysis
Note that the performance of the proposed RVO-LCMV

beamformer may also degrade due to the presence of target at
high SNRs. This is because the objective function (9) contains
the power of target while the DOA (or DOA and Doppler
frequency for STAP) of the target is not included in the con-
strained points set. To circumvent this problem, a diagonal
loading technique is adopted. The corresponding objective
function (9) can be rewritten as

(32)

where is the diagonal loading factor. Thus, the matrix is
written as

...
...

. . .
...

(33)

where for DBF or
for STAP. For DBF

implementations, can be taken as the output at angle
with adaptive weight . It can also be taken
as the correlation between and which is whitened
by the covariance matrix . Similarly, for the STAP ap-
plications, can be interpreted as the output at with
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adaptive weight or the whitened cor-
relation between and . Assume that

(34)

where
with denoting the number of large eigenvalues of

matrix . The first term on the right hand side of (34)
corresponds to the signal subspace while the second term is the
noise subspace. Thus

(35)

It follows from (35) that the elements in of (33) corresponding
to the DBF and STAP can be written as

(36a)

(36b)

Generally, the constrained points are around the assumed
DOA (or DOA and Doppler for STAP). Therefore, when the
target signal is excluded from the training data or the diagonal
loading level is higher than the signal power, the second terms
of (36a) and (36b) are relatively small for the non-mainlobe
directional interference. As the diagonal loading level becomes
large, it follows from (36) that

(37a)

(37b)

In this case, the matrix is deterministic and thus the optimal
response vector can be determined. Equation (37) is preferred
when the signal power is unknown.
Note that the mainlobe-to-sidelobe ratio (MSR) of the pro-

posed method can be expressed as

(38)

where is the angle sector of mainlobe, is the whole angle
range, is the identity matrix, and .
In (38), we assume that is a proper approximation of the
subspace of the mainlobe, i.e., . In order to ad-
dress the sidelobe reduction ability, we consider the noise-lim-
ited scenarios where the adaptive weight can be rewritten as

. Thus, it yields

(39)

Under the mainlobe constraint, the maximization of (39) is
equivalent to

(40)

It follows from (37) that . Thus, the
proposed approach can suppress the sidelobe effectively.

C. Low-Rank Approximation of the Constraint Matrix

In LCMV beamformer, each constraint consumes one DOF.
Besides, the more points are imposed, the better mainlobe of
the beampattern is maintained. However, if the DOFs of the
system are small, the performance degradation due to additional
constraints becomes severe because the interference cannot be
efficiently suppressed. To circumvent this issue, the low-rank
approximation is introduced into the constraints. The rank
approximation to can be expressed as

(41)

where is a diagonal matrix consisting the
primary singular values, is the left singular matrix (

for DBF and for STAP) and
is the right singular matrix. In the sequel, the reduced

rank constraints can be written as ,
thus we obtain

(42)

Define which is small in dimension, then the
adaptive weight can be computed as

(43)

Thus, the problem in (12) can be expressed as

(44)

D. Computational Complexity Analysis

Note that the proposed approach does not provide a closed-
form solution and the optimal response vector must be obtained
using numerical method. A common way to solve the relaxed
SDP problem is to use the interior-point method which is able
to provide precise solution. The computational complexity is
provably polynomial in the problem size.
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In particular, by introducing Lagrange multipliers
for the inequality constraints, we

obtain

(45)

It follows from [42], [43] that the minimization over is
bounded only if

(46)

Thus, we obtain the dual problem of the SDP problem as

(47)

where is an vector with all its elements are equal
to one. It has been shown in [42], [43] that the dual problem in
(47) can be solved efficiently with the worst-case complexity
of . This complexity does not assume sparsity or any
special structures in the data matrices . Note
that the matrices are sparse. A custom-built inte-
rior-point algorithm can solve the problem with a worst-case
complexity of by exploiting the sparsity of matrices

[43].
Note that the number of constraints is usually a small

scale. Compared with the state-of-the-art techniques which cal-
culate the adaptive weight vector directly [8]–[10], [31] or cal-
culate the adaptive weight matrix [29], [30], the computational
complexity of the proposed method is reduced considerably.
In STAP applications, the length of the weight is which

is a great number in practice. Thus the computational load
is huge for the state-of-the-art robust STAP implementations
[8]–[10], [26]–[31]. In contrast, the proposed method tries to
determine the optimal response vector whose size is much
smaller than that of the adaptive weight. For instance, the
number of constraints are set as in spatial domain
and in temporal domain. Note that the number of
constraints is independent on the length of the adaptive weight
in the proposed approach. Moreover, STAP radar searches
all Doppler channels to detect the possible target. Thus,
problem in (16) needs to be solved for times, which induces
a complexity of . Besides, the SMI technique is
required as shown in (8), which is solved in a complexity of

by using reweighted least squares (RLS) to update
the covariance matrix. Thus, the overall complexity of the
proposed method in STAP is

(48)

TABLE I
PARAMETERS FOR DBF

TABLE II
PARAMETERS FOR STAP

Since is much smaller than and , the computational
complexity for optimally determining the response vector is
negligible compared with that of the SMI technique. In contrast,
techniques that directly calculate the adaptive weight vector
have a complexity of , while tech-
niques that calculate the adaptive weight matrix have a com-
plexity of . Thus, the pro-
posed method is superior to the state-of-the-art techniques in
computational complexity.

V. SIMULATION RESULTS
In this section, Monte Carlo simulation is carried out to eval-

uate the performance of the proposed method. The simulation
results for the DBF are presented in the first and second subsec-
tions while those for the STAP are presented in the following
three subsections. Tables I and II provide the parameters which
are used to reproduce the simulation results in this paper. Note
that the training samples are probably corrupted by the target
signal. Moreover, the target probably occupies several range
bins, especially in the scenarios where the high resolution radar
needs to handle multiple targets. In the simulation examples, we
assume that 5 snapshots are corrupted by the target signal.

A. Beampattern Comparison for DBF
In this experiment, we examine the performance of the pro-

posed RVO-LCMV approach in the DBF radar. For compar-
ison, the simulation results of the LSMI-MVDR beamformer,
traditional LCMV beamformer, worst-case optimization beam-
former [8] and SDP based robust adaptive beamformer (namely,
the RAB-SDP in [29]) are presented as well.
Assume the accurate DOA of the target is known to the radar

receiver in this example. The true and estimated covariance ma-
trices are adopted in Fig. 2(a) and (b), respectively. The con-
strained beamwidth of the mainlobe is 6 for the traditional
LCMV, RAB-SDP [29] and proposed beamformers. The ripple
of the RAB-SDP approach is set as 0.3 dB. The constrained
points are at angles , 0 , 1 and 3 . Because the accu-
rate target DOA is known, the mainlobes of all the beamformers
are well maintained. It is seen that the sidelobes of all these
beamformers (except the traditional LCMV beamformer) are
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Fig. 2. Beampatterns of various approaches. (a) Theoretical covariance matrix.
(b) Estimated covariance matrix.

very low in the case of theoretical covariance matrix. For the
estimated covariance matrix, however, the sidelobe of the pro-
posed beamformer is much lower than those of other methods.
Besides, the mainlobe of the proposed method is well main-
tained. Thus, the robustness of the proposed RVO-LCMVbeam-
former is considerably enhanced.
In practice, the exact knowledge of target parameters is

unknown to the receiver. Instead, their estimates are usually
adopted, especially in target tracking or confirmation situations.
In this experiment, the mismatched target DOA is utilized. In
particular, the actual DOA of the target is 2 while the con-
strained angles are , 0 , 1 , and 3 . The theoretical
and estimated covariance matrices are used in Fig. 3(a) and (b),
respectively. Because of the mismatch between the assumed
and actual DOAs of the target, LSMI-MVDR beamformer
misinterprets the target as interference and tries to suppress it,
thus causing target self-nulling and severe performance degra-
dation. All other methods are robust against the presence of
the target. The worst-case optimization beamformer belongs to
the diagonal loading robust approach with the diagonal loading
factor optimally calculated, thus avoiding the self-nulling
phenomenon. It should be noted that, though the traditional
LCMV beamformer is robust against DOA errors, its sidelobe
is very high and its mainlobe is distorted. For the estimated co-
variance matrix in Fig. 3(b), it is seen that the proposed method
outperforms the other methods in terms of lower sidelobe.

Fig. 3. Beampatterns of various approaches. (a) Theoretical covariance matrix.
(b) Estimated covariance matrix.

Fig. 4. Magnitude and phase of the response vector.

In Fig. 4, the rank-one approximations of the response vectors
generated by the EVD and randomization methods are plotted.
The response vector of the traditional LCMV beamformer is
also presented for comparison. Since the response vector of the
traditional LCMV beamformer is an all-one vector, all its ele-
ments overlap. In contrast, the elements of the response vector
of the proposed RVO-LCMV method are complex-valued. It is
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Fig. 5. Performance comparison of output SINR. (a) Output SINR versus input
SNR. (b) Output SINR versus number of snapshots.

seen that the two optimal response vectors generated by EVD
and randomization methods are different in phase.

B. Output SINR Performance
In this experiment, the output SINR performance is evalu-

ated for the methods aforementioned. Note that the training data
is corrupted by the target and the assumed DOA of target is
mismatched with the actual DOA. Fig. 5(a) and (b) show the
output SINR with respect to input SNR and number of snap-
shots, respectively. The optimal SINR performance is provided
for comparison. It is observed in Fig. 5 that the LSMI-MVDR
beamformer is sensitive to input SNR and the performance de-
grades at high SNRs. The worst-case optimization, RAB-SDP,
traditional LCMV, and proposed RVO-LCMV beamformers are
robust against input SNR. Moreover, the proposed method pro-
vides substantial performance improvement compared with the
traditional LCMV beamformer which degrades severely in per-
formance due to the high sidelobe and distorted mainlobe. The
performance of the LSMI-MVDR beamformer is even worse
because of the target self-nulling. In contrast, the worst-case op-
timization, RAB-SDP, and proposed RVO-LCMV beamformers
can maintain their performance for small samples. Furthermore,
the proposed LCMV-RVO performs the best.

Fig. 6. Output SINR versus DOA error.

Fig. 7. Capon spectrum of clutter and target.

Fig. 6 plots the output SINRs of the aforementioned beam-
formers for different DOA errors. It is clearly seen that even
small DOA error can lead to severe performance degradation for
the LSMI-MVDR beamformer. However, other approaches are
more robust against the DOA error. Note that the worst-case op-
timization beamformer is only robust for a limited region. That
is, its performance degrades dramatically when the DOA error
is much larger. Although the traditional LCMV beamformer
is robust over [ , 5 ], its output SINR is much lower than
that of the proposed RVO-LCMV method. The performance
of the RAB-SDP beamformer is a little bit worse than that of
the proposed RVO-LCMV beamformer over [ , 5 ]. It has
been pointed out in [29] that the robust response region of the
RAB-SDP beamformer can be flexibly controlled with specified
beamwidth and response ripple. Therefore, it can be robust over
a large DOA error range. In a word, the proposed RVO-LCMV
beamformer performs almost the best in the whole tested DOA
error range, and its maximum performance loss is less than 4 dB
when the DOA error is smaller than 5 .
In the following three subsections, experimental simulations

have been carried out to evaluate the effectiveness of the
proposed RVO-LCMV method in STAP applications. Without
loss of generality, the sidelooking geometry is utilized [1].
Fig. 7 shows the Capon spectral estimation, which is calculated
by

(49)
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where with and being
the normalized Doppler frequency and normalized spatial fre-
quency, respectively. It is seen that the clutter is coupled in spa-
tial and temporal domains, and its clutter ridge is diagonally dis-
tributed in the sidelooking geometry of STAP radar. The target
is assumed in the range bins 148 to 152 and all snapshots are
used as training data. The other simulation parameters are listed
in Table II for the STAP implementations.

C. Beampattern Comparison for STAP
Fig. 8 shows the space-time beampatterns of the LSMI-

MVDR, traditional LCMV,worst-case optimization, RAB-SDP,
and proposed RVO-LCMV methods. The pentagrams in these
figures stand for the true target position. Note that Fig. 8(d) and
(e) depict the space-time beampatterns of the RAB-SDP
method. In Fig. 8(d), the adaptive weight vector is adopted
which is obtained by spectrum factorization, while in Fig. 8(e),
the adaptive weight matrix is utilized to calculate the space-time
beampattern. It is seen that the rank-one weight vector derived
by the spectrum factorization is invalid while the weight matrix
determined by SDP approach works well. As shown in Fig. 8,
the mainlobe of LSMI-MVDR method is distorted due the
presence of target in the training data. The space-time beampat-
tern of the traditional LCMV method is also distorted and its
mainlobe is lower than its sidelobe, which causes a high false
alarm probability especially in non-stationary environments.
It should be noted that the space-time beampattern of the
worst-case optimization method also suffers from distortion for
high SNRs. It is seen in Fig. 8(c) that the target point is close
to the notch of the beampattern, which indicates a mismatch
between the mainlobe and the true target. In contrast, the
proposed RVO-LCMV method outperforms other methods in
terms of both lower sidelobe and better-maintained mainlobe
of the space-time beampattern.
Figs. 9–10 show the magnitude and phase contour map of the

response vector of the proposed RVO-LCMV method in STAP
radar. Both the EVD and randomization methods are evalu-
ated in the procedure of rank-one approximation. Nine con-
strained points surrounding the assumed target are chosen. The
constrained spatial and Doppler frequencies are

and , respectively,
where and denote the assumed spatial and Doppler fre-
quencies corresponding to the pointing direction of antenna and
assumed target velocity, respectively. It is seen that the contour
map of the response vector approximates an inclined plane.

D. Output SCNR Performance
The output signal-to-clutter-plus-noise ratio (SCNR) curves

versus input SNR and number of snapshots are shown in
Fig. 11(a) and (b), respectively. The optimal curve is also de-
picted in Fig. 11 for comparison. It is seen that the LSMI-MVDR
method is sensitive to input SNR especially at high SNRs. The
performance degradation of the traditional LCMV method is
evident compared with other methods. However, the worst-case
optimization, RAB-SDP (using weight matrix) and proposed
RVO-LCMV methods are all robust against input SNR and
number of snapshots in the STAP applications. Moreover, the
proposed method outperforms other methods in terms of output

Fig. 8. Space-time beampatterns of various approaches. (a) LSMI-MVDR
method. (b) Traditional LCMV method. (c) Worst-case optimization method.
(d) RAB-SDP method using weight vector. (e) RAB-SDP method using weight
matrix. (f) Proposed RVO-LCMV method.

Fig. 9. Magnitude of the response vector. (a) EVD method. (b) Randomization
method.

Fig. 10. Phase of the response vector. (a) EVD method. (b) Randomization
method.



5730 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 21, NOVEMBER 1, 2015

Fig. 11. Comparison of output SCNR performance. (a) Output SCNR versus
input SNR. (b) Output SCNR versus number of snapshots.

Fig. 12. Output SCNR versus angle and Doppler frequency errors. (a) LSMI-
MVDR method. (b) Traditional LCMV method. (c) Worst-case optimization
method. (d) RAB-SDP using weight vector. (e) RAB-SDP method using weight
matrix. (f) Proposed RVO-LCMV method.

SCNR and convergence rate. It should be noticed that the com-
putational load of the RAB-SDP method is extremely heavy
because the dimension of the weight matrix is

Fig. 13. SCNR loss versus normalized Doppler frequency.

, while the dimension of matrix in the proposed
approach is relatively small, which only takes in
this example.
In Fig. 12, we evaluate the DOA and Doppler frequency error

tolerance of the LSMI-MVDR, traditional LCMV, worst-case
optimization, RAB-SDP using weight vector, RAB-SDP using
weight matrix and proposed RVO-LCMV methods. It is seen
that the performance degradation of the traditional LCMV
method is substantial. Meanwhile, the LSMI-MVDR method
has a limited robust region due to its performance degradation
at high SNRs. The worst-case optimization method is robust
against DOA and Doppler frequency errors and provides the
moderate performance. The performance of the RAB-SDP
method using weight vector is even worse than that of the tradi-
tional LCMV method. However, the RAB-SDP method using
weight matrix performs well. It is also seen that the proposed
RVO-LCMV method outperforms other methods with a wider
robust region in DOA and Doppler frequency error range.

E. SCNR Loss Performance

In this subsection, the SCNR loss with respect to the normal-
ized Doppler frequency is tested. The SCNR loss is defined as
the ratio of clutter-limited output SCNR to noise-limited output
SNR, that is,

(50)

where and are respectively the target covariance ma-
trix and clutter-plus-noise covariance matrix, and are the
powers of target and white Gaussian noise.
The SCNR loss curves are plotted in Fig. 13 for the LSMI-

MVDR, traditional LCMV, worst-case optimization, RAB-SDP
(using weight matrix), and proposed RVO-LCMVmethods. For
comparison, the optimal curve is provided as well. The contam-
inated training data and inaccurate target parameters are used
in this simulation. As shown in Fig. 13, the performance im-
provement of the proposed RVO-LCMV method is substantial
compared with other methods when the Doppler frequencies are
large. However, the performance of the proposed method de-
grades at small Doppler frequencies. Indeed, when the assumed
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Doppler frequency of target is close to the clutter ridge, the min-
imization of the output covariance will conflict with the con-
straints. Thus, the traditional LCMV, RAB-SDP and proposed
methods degrade in SCNR loss performance at small Doppler
frequencies. However, it is seen that the worst-case optimization
method can maintain its performance at small Doppler frequen-
cies. The wide notch in the SCNR loss of the proposed method
is the cost for robustness, which results in a thicker region in the
angle/Doppler plane around the clutter ridge where detection is
non-viable. This drawback occurs every time a robust imple-
mentation of STAP is applied [33]. A trade-off has to be always
found between robustness and target detection capability close
to the clutter ridge.

VI. CONCLUSION

The traditional LCMV beamformer suffers high sidelobe and
distorted mainlobe of the beampattern, which causes severe per-
formance degradation. In this paper, we have devised a robust
variant of the LCMV beamformer based on response vector
optimization. The proposed method is firstly formulated as a
non-convex QCQP problem, and then transformed into a SDP
problem. By using the diagonal loading technique, the proposed
approach enjoys lower sidelobe and well-maintained mainlobe
of the beampattern. The performance improvement is substan-
tial for both DBF and STAP. Moreover, the devised algorithm
has a much wider robust region of DOA and/or Doppler fre-
quency errors. Furthermore, the computational complexity of
the proposedmethod is considerably reduced compared with the
state-of-the-art techniques.
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